Inequalities on submodular functions via term rewriting
نویسنده
چکیده
We devise a method for proving inequalities on submodular functions, with a term rewriting flavour. Our method comprises of the following steps: (1) start with a linear combination X of the values of the function; (2) define a set of simplification rules; (3) conclude that X ≥ Y , where Y is a linear combination of a small number of terms which cannot be simplified further; (4) calculate the coefficients of Y by evaluating X and Y on functions on which the inequality is tight. The crucial third step is non-constructive, since it uses compactness of the dual cone of submodular functions. Its proof uses the classical uncrossing technique with a quadratic potential function. We prove several inequalities using our method, and use them to tightly analyze the performance of two natural (but non-optimal) algorithms for submodular maximization, the random set algorithm and local search.
منابع مشابه
A note on concentration of submodular functions
We survey a few concentration inequalities for submodular and fractionally subadditive functions of independent random variables, implied by the entropy method for self-bounding functions. The power of these concentration bounds is that they are dimension-free, in particular implying standard deviation O( √ E[f ]) rather than O( √ n) which can be obtained for any 1Lipschitz function of n variab...
متن کاملSome Results about the Contractions and the Pendant Pairs of a Submodular System
Submodularity is an important property of set functions with deep theoretical results and various applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization. Nowadays submodular functions optimization has been attracted by many researchers. Pendant pairs of a symmetric...
متن کاملOn k-Submodular Relaxation
k-submodular functions, introduced by Huber and Kolmogorov, are functions defined on {0, 1, 2, . . . , k}n satisfying certain submodular-type inequalities. k-submodular functions typically arise as relaxations of NP-hard problems, and the relaxations by k-submodular functions play key roles in design of efficient, approximation, or FPT algorithms. Motivated by this, we consider the following pr...
متن کاملForthcoming in Mathematical Programming MAXIMIZING A CLASS OF SUBMODULAR UTILITY FUNCTIONS
Given a finite ground set N and a value vector a ∈ R , we consider optimization problems involving maximization of a submodular set utility function of the form h(S) = f (∑ i∈S ai ) , S ⊆ N , where f is a strictly concave, increasing, differentiable function. This function appears frequently in combinatorial optimization problems when modeling risk aversion and decreasing marginal preferences, ...
متن کاملCheeger Inequalities for Submodular Transformations
The Cheeger inequality for undirected graphs, which relates the conductance of an undirected graph and the second smallest eigenvalue of its normalized Laplacian, is a cornerstone of spectral graph theory. The Cheeger inequality has been extended to directed graphs and hypergraphs using normalized Laplacians for those, that are no longer linear but piecewise linear transformations. In this pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Process. Lett.
دوره 113 شماره
صفحات -
تاریخ انتشار 2013